Осевая и центральная симметрия - сообщение доклад (6, 8 класс)

Симметрия является неотъемлемой частью мира, в котором мы живем. Мы восхищаемся красотой природы, архитектурными сооружениями, механическими приборами и шедеврами искусства, не задумываясь над тем, что в основе их создания лежит симметрия.

«Симметрия» с греческого языка переводится как гармония, соразмерность, красота. Впервые термин стал широко употреблять Пифагор в до н.э. Им он обозначил трехмерное изображение геометрических фигур и их частей в пространстве. Также ученый определил отклонение от симметрии как асимметрию.

Существует два основных виды симметрии: осевая и центральная.

Осевая симметрия или зеркальная – это симметрия относительно оси. То есть одна половинка фигуры полностью соразмерна с другой относительно прямой. Так если согнуть листок пополам, то каждая точка одной половины листа будет иметь своего двойника на другой половине, а сам сгиб станет осью симметрии.

Зеркальную симметрию можно наблюдать в природе: листья растений симметричны относительно среднего стебля, крылья бабочки являются зеркальным отображением друг друга, человек и животные обладают симметрией в расположении частей тела. Архитектурные сооружения также являются ярким примером осевой симметрии. Фасады зданий, особенно античных, вызывают чувства строгости и восхищения красотой именно благодаря симметрии их частей. Симметрия в архитектуре служит не только для эстетического удовольствия наблюдателей, но и гарантирует зданиям и сооружениям прочность и надежность конструкции.

Центральная симметрия – это симметрия относительно точки. У такой симметрии обязательно есть неподвижный центр, при вращательных действиях на 180° относительно него фигура переходит сама в себя. Благодаря этому свойству центральная симметрия получила второе название – поворотная. С древнейших времен ее эталоном считается круг, и действительно, как бы мы не поворачивали его вокруг центра, каждая точка окружности переходит в соответствующую ей. В природе ярким примером центральной симметрии являются снежинки; цветы таких растений, как одуванчик, мать-и-мачеха, а также ромашки, если количество ее лепестков четное; шестеренки механизмов.

Вариант 2

Наверное, каждый слышал такие понятия, как "симметрия", "симметрично" и тому подобное. Но есть такие люди, которые не понимают значение данных синонимов. Так что же такое симметрия? Где ее применяют? И какие разновидности существуют?

Краткий экскурс о симметрии в общих чертах.

Постараюсь объяснить понятие симметрии на некотором примере. Представьте обыкновенную бабочку. Так, а теперь надо провести через нее линию. Когда линия окончательно проведена, необходимо посмотреть на правую и левую части рисунка. Если эти 2 части рисунка одинаковы по размерам и пропорциям, то это можно называть симметричной моделью. Короче говоря, симметрия – это полная соразмерность частей тела по отношению к линии. Где же применяется симметрия? Ну, симметрия встречается везде, где только можно. Геометрия, физика, биология, химия, культура – все это содержит симметрию, причем каждая отличается друг от друга. Еще существует понятие асимметрии. То есть, отсутствие правильной соразмерности. Еще стоит отметить, что симметрия не всегда бывает точной.

Некоторые виды симметрии, их характеристика и применение.

Всего наберется с десяток разных видов симметрий. Но рассмотреть необходимо только те, которые часто встречаются. Сразу стоит сказать, что обе из них находят применение в решении задач по геометрии. Итак, вот 2 главных вида симметрии:

Осевая симметрия.

Этот вид симметрии делится на 4 группы, отличающиеся друг от друга.

1) Отражательная симметрия – это зеркальное движение, в котором точки, не перемещающиеся никуда, соединены в одну линию – ось симметрии. Прямоугольник и параллелограмм – отличные примеры.

2) Вращательная симметрия – это осевая симметрия, которая относительна поворотам вокруг оси.

3) Осевая симметрия n – го порядка – это симметрия относительно поворотов на 360 градусов вокруг оси.

4) Зеркально поворотная осевая симметрия n – го порядка – то же самое, только перпендикулярно оси.

Центральная симметрия.

Это преобразование, при котором каждая точка А переходит в точку А1, при этом она симметрична предыдущей относительно оси О. Данная симметрия – это, по сути, тот же поворот на 180 градусов в планиметрии. Центральную симметрию от осевой отличает то, что в первом случае присутствует движение.

Картинка к сообщению Осевая и центральная симметрия

Осевая и центральная симметрия

Популярные сегодня сообщения и доклады